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The structure of atomically sharp equilibrium cracks in diamond, silicon and germanium
is calculated. The treatment considers a long plane crack formed by bond rupture across the
(111) oleavage plane, critically loaded in tension. Within a small ‘core’ region immediately
surrounding the crack tip the interatomic interactions are represented by a potential function
specially constructed to match macroscopic fracture parameters. Anisotropic linear elastic
theory is invoked to provide boundary conditions for the core region, and a first approxima-
tion for lattice-point displacements within. The core atoms are then relaxed to a configuration
of minimum potential energy by computer. The results indicate that continuum theory is
capable of giving remarkably accurate predictions of the crack-tip displacement field, except
within about three atom spacings from the tip, despite marked nonlinearity in the interatomic
force function. These results are discussed in terms of existing continuum models of crack-tip
structure: in particular, Barenblatt’s model of a cusp-shaped tip region is found to be in-
applicable to diamond-structure crystals. The crack-tip geometry is better pictured as
a narrow slit terminated by a single line of bonds close to the rupture point. Brief reference
is made to the possible extension of the treatment to other classes of highly brittle solid,
especially glassy materials, and to the relevance of the results to some fracture problems
of practical importance.

1. INTRODUCTION

The fracture of an ideally brittle solid is essentially an atomic process, in which
cohesive bonds are ruptured at the tip of the growing crack. Yet traditionally the
mathematical treatment of the mechanics of fracture propagation has been de-
veloped almost exclusively from continuum concepts. The chief reason for this
lies in the interest of simplicity, a proper description of the atomic configuration
at a crack tip requiring seemingly formidable analysis in terms of a suitable
structural model for the given solid. The continuum approach, based on linear
elasticity theory, has in fact proved adequate in many fracture-mechanics
problems: in particular, the growth of a semi-brittle crack in most ‘engineer-
ing materials’ can be described in terms of a macroscopic ‘plastic zone’ encasing
the tip.

Many mechanical properties, on the other hand, are highly sensitive to events
occurring over distances no greater than a few interatomic spacings. For instance,
the energetics of dislocations in plastic crystals, particularly covalently-bonded
crystals, may depend largely on the atomic structure of the dislocation core. The
ideally brittle crack provides a similar case, the crack front advancing one atomic

1 Now at Theoretical Physics Division, A.E.R.E., Harwell, Didcot, Berks., England.
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spacing for each line of cohesive bonds ruptured at the tip. The geometrical con-
figuration of bonds immediately surrounding the crack tip may well play a decisive
role in a fracture propagation process. In such cases an atomistic description would
be warranted.

The question of the fundamental nature of brittle crack propagation is of more
than just academic interest. It bears on such practical problems as the influence
of a reactive environment on fracture strength, and the path taken by a crack
extending through an arbitrary stress field. In each case a proper understanding of
the phenomenon demands an interpretation in terms of the bond behaviour at
the very tip of the crack itself. Further elaboration on this point will be given in §4.

In this paper the atomic structure of crack tips in diamond-structure crystals is
computed according to a mathematical relaxation procedure. Diamond-type
crystals represent possibly the most brittle class of materials at room temperature.
Our discussion does, however, extend to other covalent solids, in particular to the
widely studied glassy solids. The relaxation method involves the introduction of
a suitable interatomic potential function to represent interactions between neigh-
bouring (point) atoms within a prescribed ‘core region’ surrounding the crack tip.
The core boundary is taken sufficiently distant from the crack tip that nonlinear
terms in the interatomic force function become tolerably small. Linear elastic
continuum theory may then be invoked to supply the boundary conditions for the
problem, and to provide a first approximation for the relaxation procedure. Finally,
the atomicregion is computer relaxed to realise a configuration of minimum potential
energy consistent with the conditions at the core boundary.

2. THE CONTINUUM APPROACH

In this section we outline the continuum approach to the theory of equilibrium
cracks. In doing so we shall not make any assumptions about the nature of the tip
zone except that new surfaces form there in a thermodynamically reversible manner.
We thus invoke the basic notion of Griffith (1920) that for a small extension of an
equilibrium crack the increase in free surface energy of the crack walls just balances
the reduction in strain energy of the system. Kinetic terms are taken to be zero.

2.1. Displacement field of a plane crack in an anisotropic
linear elastic continuum

The concept of a crack in a continuum as an internal surface of discontinuity,
stress-free over its entire area, forms the basis for present-day fracture mechanics.
Starting from this model, several authors have obtained solutions for displacements,
strains and stresses around a plane, straight-edged crack in an anisotropic body.
For instance, Savin (1961) has solved completely the case of homogeneous two-
dimensional loading applied at infinity, while Sih, Paris & Irwin (1965) have given
crack-tip solutions for arbitrary loading geometry. Sih ef al. show that the solu-
tions are very similar to those obtained with isotropic elasticity: in particular,
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stress singularities of the order of % (r being the distance measured from the crack
tip) are always obtained.

The crack system considered here consists of a long, plane crack in an infinite
body, with one crack edge along the 3 axis and the other edge parallel to the first
and far distant in the negative z, direction (figure 1). We shall consider only the
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Fiaure 1. The crack system studied. An infinite body contains a plane crack of infinite width
in the z; direction. The crack lies in the x; z; plane with one edge along the z-axis and
the other parallel and far distant in the negative z;-direction. The body is loaded so as
to produce & uniform stress o at infinity.

case where the external loads produce a condition of plane strain perpendicular to
the crack edges. Regarding the elastic anisotropy, it is assumed only that there is
mirror symmetry about the x,z, plane, for this simplifies the analysis somewhat.
The plane strains may then be written in terms of the in-plane stresses ast

)
Here the single-subscript notation for stress and strain (defined for instance by
Nye 1957) is used.
Sih et al. use the standard complex-function method described by Lekhnitskii

(1963), whereby the displacements and stresses are expressed in terms of two
complex functions ¢,(z;), I = 1,2, of the variables

y=x+umx, (1=1,2). (2)
The constants y; are obtained from the equation
A 4 — 2006 1% + (2035 + Q) Y2 — 296 0 + Ay = 0, (3)
whose roots are gy, 4¥, uy, p3 (two conjugate pairs).

T Note that a,; are modified compliances, since o7, linearly dependent on oy, o, and o, for
plane strain, has been eliminated.
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The displacements and stresses are given by T

%, = X Re[pd(%)],
1

Uy = ? Re [¢,¢:(2)], (4)
ug = 0,
=3 Re [17 $1(=)],
= § Re[¢i(z)], (5)
=X Re[—méi()],
where Py = Gy ff + Qyp— Gy g, } (6)
@ = g1 Jy+ Aoty — G,
and $i(z) = 0¢y(z)[0z,. (7)

The solution given by Sih ef al. is

d(z) = %(2@)% (I=1,2; m = 2, 1, respectively). (8)

m
Here the real numbers k,, k, are so-called stress intensity factors which are related
to the external loading. If the crack length is 2¢ and the loading is uniform stress
(™) at infinity,1 we have
ky, = c2ol®); k, = clo{. (9)

In this paper we shall consider only tensile loading and take k, = 0.

It is interesting to note how the solution above is modified by excluding a tip
zone, bounded by some cylindrical surface S (figure 1), from the continuum region.
Within S, nonlinear behaviour could occur and surface tension forces could become
important. With this modification to the original model, the functions ¢,(z,) are
no longer required to be analytic at the origin, and can be expressed as power
series containing positive and negative powers of z} Assuming finite stresses at
infinity, one obtains

:um 1+k

2
2z
hi(z) = e — i tml 2 (2z)%
- Z (e)"— 1”—’"/:\1”*;:2"( 2z) (I =1,2;m = 2,1,respectively), (10)
n=1 m

where the real constants A;, could be regarded as higher-order stress intensity
factors, whose values would depend only on conditions at the inner boundary S.
Since the higher-order terms in (10) fall off more rapidly than the principal term

1t Expressions (4) and (5) differ from those of Lekhnitskii by a factor of 2, here arbitrarily
included in the functions @,.

1 The foregoing solution is actually the limit for ¢ - co. In thislimit, if k,, k, are held constant,
then o{® — 0, but the profile of the crack-tip remains invariant.
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with distance from the tip, they become negligible at distances large compared with
the diameter of S (Saint-Venant principle). The simple solution (8) is thus valid at
such distances whatever the nature of the tip zone, provided it is small compared
with the crack length.

2.2. Calculations for some specific materials

The foregoing results give stress and strain distributions for a crack of given length
and loading, but do not allow the critical stress intensity factors for crack extension
to be determined. This point will be considered in the next section, but it is in-
structive at this stage to apply the continuum theory to calculate crack-tip
geometries for selected brittle solids. We choose to consider fused silica, as repre-
sentative of the elastically isotropic glassy materials, and silicon, one of the
diamond-structure crystals. In both these materials, the covalent bond structure
minimizes the possibility of plastic flow under the high crack-tip stress field (Kelly,
Tyson & Cottrell 1967).

In the absence of any information regarding surface tension forces or nonlinear
behaviour at the tip, let us apply the simple solution} (8) (no doubt beyond its
valid range) to determine the displaced contour for x, = * }ry, where r, is the inter-
atomic spacing. For this purpose, we shall ignore the ‘randomized’ structure of
glasses and take 7, as the average silicon—oxygen bond length. The critical stress
intensity factors we shall obtain from experimental data.

First, we plot in figure 2 profiles computed using isotropic elasticity with a range
of stress intensity factors which may be representative of glassy materials in general.
Figure 3 then shows the equilibrium profile for fused silica appropriate to the critical
stress intensity factor k,, measured by Wiederhorni (1969) using adouble-cantilever
fracture technique under carefully controlled conditions (dry nitrogen at 25 °C).
Also plotted in figure 3 is the (parabolic) crack contour (broken line) for the ideal
continuum surface at , = 0.

For the diamond-structure crystals we take the crack plane as (111) and the
crack edges perpendicular to the mirror plane (011). The elastic constants ¢,;, ¢,5, €44
referred to the standard cubic axes are transformed for this orientation (see Hirth &
Lothe 1968) and the constants a,; then deduced (Sih et al. 1965). The constants used
for silicon are shown in table 1. Figure 4 shows the equilibrium profile calculated
from (4) to (8) and k,, as measured for silicon at liquid nitrogen temperature by
Jaccodine (1963).

We note from figures 3 and 4 that the crack tip radii in the continuum limit (the
parabolic contours) are small compared with atomic dimensions. For the contours
shown p[ry =~ 0.9 (silica), 0.1 (silicon) where the tip radius p is given in the isotropic
case by p = [2k,(1—v?)/E]? (Irwin 1958). It is clear from figure 2 that for materials
characterized by relatively large stress intensity factors the crack-tip bonds are

1 The solutions given for anisotropic elasticity become indeterminate in the special case of

isotropy. For this case see, for instance, Irwin (1958).
1 Our stress intensity factor differs by a factor of =t from that of Wiederhorn.
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likely to stretch well beyond a typical ‘linear’ range, while for relatively small
stress intensity factors the gradual crack-face separation presents a favourable
situation for significant cohesive attraction across the interface. These factors
require the atomic structure and interactions to be taken into account.

\/

Ficure 2. Crack profiles for fused silica, computed for x; = * 47, in continuum-theory dis-
placement field. Curves represent the values 2 x 108, 5 x 105, 10 x 105 N'm-# for the stress
intensity factor &,. Computed for Young modulus £ = 7.2 x 101°Pa, Poisson ratiov = 0.17
(Huntington 1958), average Si—O bond-length 7y = 0.162nm. Circles indicate points
originally r, apart. The axes are graduated in units 0.1nm (1 4).

Fi1cure 3. Equilibrium profile for fused silica, x, = + 4r, (full line), 2, = 0 (broken line). The
critical stress intensity factor is k,, = 4.5 x 105N m~# (Wiederhorn 1969), E, v, 7, as in
figure 2. Circles are not to be taken as indicating the solid structure, but only the average
atomic spacing.
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2.3. Relation of surface energy and cohesive atomic forces to crack equilibrium

In his original treatment of the crack problem, Griffith (1920) found the displace-
ment and stress fields about the tip by considering an elliptical cavity in a body under
external load. As in the solution given above, the stress became singular at the
tip in the limit of zero minor dimension of the ellipse. This physically unrealistic
result can be attributed to the atomic dimension of the tip radius, and to the neglect

TaBLE 1
experimental data
p A N diamond Si Ge
nearest-neighbour 7o 0.15445 0.23517 0.24498
distance/nm
elastic constants}/1011 Pa cn 10.76 1.675 1.311
Cra 1.25 0.650 0.492
Cag 5.76 0.801 0.682
sublimation energy{/10-1°J Ej 11.8 7.46 6.17
calculated quantities
Ao
r A}
elastic compliance ay, 8.520 53.73 65.55
constants/10-13 Pa~1 Ay —0.408 —11.94 —12.17
g —0.793 —12.00 —16.81
g 8.253 50.43 60.71
g 0.038 2.67 3.12
g 19.646 164.33 199.93
force constants in F, 472.97 161.55 129.89
potential function/Nm—  F, 56.53 9.277 7.722
Jre 15.12 3.001 4.050
‘range’ parameter in o 20.04 14.71 14.51
potential function/nm—! :
surface energy/J m—2 b 5.35 1.46 1.07

1 From MecSkimmin & Bond (1957), MeSkimmin (1953) and MeSkimmin & Andreatch (1963).
1 Converted to J/atom from values in kecal/g atom given by Gschneider (1964).
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FiGcure 4. Equilibrium profile for silicon crystal, computed from (4), (7) for atom planes at
zy = +3r, (full line), and at x, =0 (broken line). Critical stress intensity factor
ke = 3.76 % 105Nm-# from measurements of Jaccodine (1963); elastic constants and 7,
as in table 1.
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of the effect of surface tension forces on the stress distribution. However, despite
its neglect in consideration of the stress field, the surface tension was afforded prime
importance in Griffith’s basic equation

=—-0U/[0c = 2y (11)

for crack extension equilibrium. Here @ is the ‘crack extension force’ or ‘strain
energy release rate’, arising from reduction in strain energy U per unit crack width
upon extension of the crack length ¢, and y is the surface energy per unit area.
Despite therecognized limitationsof Griffith’s approach to crack shape, equation (11)
stands as the fundamental starting-point for all fracture mechanics.

A significant modification to the description of crack geometry was made by
Barenblatt (1962). He proposed that linear continuum theory could validly be
employed, even near the crack tip, if it was considered that forces of atomic cohesion,
acting across the narrow crack interface, cause the faces to close smoothly in a
‘cusp’ form. This ensures that the stresses and strains are everywhere finite. A con-
dition for the validity of the model is that the distance, d, from the tip over which
cohesive forces are significant should lie in the range 7, < d < ¢. That is, nothing in
the crack shape or stress distribution should vary appreciably over atomic distances,
so that the continuum approach is valid. Theoretical and experimental estimates
of d (Cribb & Tomkins 1967; Schmidt & Woltersdorf 19770) have varied from orders
of one to tens of atomic spacings, so that the applicability of the model is in some
doubt. Nevertheless, regardless of any differences in details of crack-tip geometry,
Barenblatt’s model is essentially consistent with that of Griffith concerning the
condition for equilibrium.

The concept of the existence of a small zone of nonlinearity about the crack tip,
as mentioned in §2.1, has been used in the Irwin—Orowan (Orowan 1949; Irwin
1958) extension of the Griffith equation (11) to the irreversible case of a plastic
zone moving with the crack tip. Rice (1968) has shown that specific consideration
of the internal structure of the core zone is unnecessary in evaluating the strain
energy release rate. He expresses G in terms of a path-independent line integral
taken in OX, X, around the crack tip through the surrounding linear elastic region.
This integral is also found to beindependent of the higher-order terms in (10) (Sinclair
1971a), with the consequence that values of G calculated from the simplistic
continuum model, in which the higher terms disappear, are perfectly valid. For
the anisotropic case with tensile loading (k, = 0) Sih et al. obtain

+u
G = rkla, Im[-—’ul——g]. 12
Ty Qoo atn (12)
Through (11) this enables the equilibrium stress intensity factor to be related to
the surface energy y. Thus while the status of Griffith’s equilibrium equation is
preserved, the nature of the crack-tip region becomes a complex nonlinear problem
requiring a detailed structural model.
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3. THE ATOMISTIC APPROACH

The major obstacles confronting an atomistic approach to the mechanical be-
haviour of solids are the lack of fundamental knowledge of interatomic potential
functions, and the computational difficulties associated with determining the con-
figuration of minimum free energy for a given structure. The advent of high-speed
computers has largely removed the second of these, and atom-relaxation methods
have recently been used to describe the core structures of point defects and dis-
locations in crystals. In many cases, however, sensitivity of the calculation to
specific details in the potential functions still proves to be a main limiting factor.

Atom-relaxation methods were first applied to the problem of the mechanical
strength of brittle solids by Tyson (1966), who computed theoretical maximum
strengths of perfect crystals of several bonding types, subjected to homogeneous
shear or tension. Chang (1969, 1970) subsequently simulated a crack in b.c.c. and
f.c.c. metals by relaxing to equilibrium atoms in a crystallite containing a narrow
(5-20 atom spacings) vacancy sheet. Gehlen & Kanninen (1970) considered a con-
figuration more representative of an ideal cleavage crack, that of two separating
adjacent (100) atomic layers in a-iron. One disadvantage of working with materials
characterized by metallic bonding is that dislocation nucleation in the crack-tip
stress field arises as a possible complication (Kelly et al. 1967).

We have used an atomic model to study the configurations of tensile-loaded cracks
in the inherently more brittle diamond-structure crystals, diamond, silicon and
germanium. Only the atoms near one tip of a long crack are considered explicitly.
These atoms form ‘region I’ (‘core’). In ‘region II’ the remainder of the crystal
surrounding region I, the continuum solutions given in § 2 are assumed to apply and
are used to calculate the fixed atom positions which supply the boundary conditions
for the core region. The atoms in region I are moved to their positions of minimum
potential energy as determined from the potential function described in the following
subsection.

3.1. A potential function for diamond-type crystals

The nature of the bonding in diamond, silicon and germanium is largely covalent.
Unfortunately, certain aspects of this bond type are poorly understood at present.
In particular, we have little quantitative knowledge of the energetics of large
stretching or bending of such bonds, and the nature of possible electron redistribu-
tion at free surfaces or internal defects is a subject of some controversy. These
factors are relevant to the present problem, in which bonds at the crack tip are
strained beyond their limit and new surface area is created. Until our understanding
of these difficulties improves, the calculations described below must be considered
as first approximations.

Nevertheless, we may hope to demonstrate some of the essential features of the
crack-tip structure in brittle solids with the use of a semi-empirical potential,
provided it satisfies the following conditions:

(i) The derivatives of the potential evaluated in the perfect-lattice configuration
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should be such as to match the observed elastic behaviour, at least for homogeneous
strain states, and if possible, also for short wavelength vibrations.

(ii) Under uniform dilation of the perfect crystal the potential energy should be
minimum at the true value of the lattice parameter.t

(iii) For large strains the interatomic cohesive forces must be limited, and tend
to zero for very large separations.

(iv) The work done in separating atoms across the fracture plane to infinity should
yield a reasonable value for the surface energy.

(v) The form of the potential should be such as to account for the brittle nature of
the crystal.

Conditions (i) and (ii) can be readily satisfied by the type of potential function
assumed in the harmonic lattice dynamics theory, quadratic in the atom displace-
ments from the perfect lattice positions. The other conditions, however, can not.
A ‘nonlinear’ type of potential is required for (iii) and (iv), but potentials such as the
Morse function, which produce only central forces, inadequately represent covalent
bonds in the solid state. Non-central terms appear to be a prime requirement for (v),
and are also necessary for (i) considering the type of anisotropy observed in diamond-
type crystals (De Launay 1956).

The potential we propose has the following form. The strain potential energy of
a group of atoms displaced from diamond-lattice positions is written as

U=4% % FlA,(r)P+% lﬁi FylA4(dip) P+ iz;‘l’_frwﬁ[Ar(ri) +A4,(r)144(Pi),  (13)

where A,(r;) = (1/a) [1 —exp{—a(r;—7o)}] (14)

and

A4(di) = ( — SZ; ¢0) (c0s ¢;;— cos @) exp { —a(r; — 7o)} exp{—a(r;— 7o)}  (15)
Here 7, is the length of the ith nearest-neighbour bond, ¢,; is the angle between two
bonds r;, r; from the same atom, 7, is the perfect-lattice nearest-neighbour distance,
and ¢, is the equilibrium inter-bond angle (cos ¢, = —} for the diamond lattice).
In (13) the sum over ¢ includes all nearest-neighbour bonds, while the double sums
over 4, j include all distinct pairs of bonds having an atom in common. The con-
stants F,, Fy, f,;, o are parameters to be selected.

The construction of this potential function may be explained as follows. For
small displacements from the perfect-lattice configuration, (13) is quadratic in the
bond-lengths and inter-bond angles. For we have

A(r,) = dr, =r;—rqr Or; L7y
A¢(¢ij) R 7000y = To(Pi—Po): Oy K 15 14,75 R 7.

1 Potentials not satisfying this criterion have been used in atomistic calculations, with the
holding forces required for stability provided by fixed boundary atoms. However, this would
not be possible in the present case where the atomistic region includes part of a free surface,
at which no such holding forces could be applied.
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Thus for infinitesimal displacements, (13) takes the general form
U=3}XXH,F,,H, (16)
n m

where H, are displacements (either &, or 7,8¢,;) and F,,,, = 02U[0H, OH,, are force
constants. Thus we may see that F, is the force constant for bond stretching, F; the
constant for bond bending, and f,, a coupling constant between the size of an angle
and the length of its arms.

Equation (16) has the well-known form of a harmonic potential, here in terms
not of Cartesian displacements but of internal or ‘valence’ coordinates—bond
lengths, inter-bond angles, etc. Our potential (13) is a nonlinear extrapolation of
this quadratic form, selected to give the required behaviour for large strains. In
this connection, the parameter « can be selected to give the interactions a ‘range’.
The behaviour at large strains can be seen from the limits

A(r;) > 1Ja as r;—> o0, (17a)

A4(¢;) >0 aseither 7, or 7r;—> o0, (17d)
independent of ¢,;.

These ensure negligible force between any widely separated atoms.
The forms of the nonlinear functions 4,, 4, were selected partly by analogy with
the Morse function. We note that the radial terms in (13) may be written

$E[A,(r)]? = (F,[20%) [1 —exp {—a(r; — 7o)} ]?
= V(r)+D,
where D = F,[2a2 and

V(r;) = Dlexp{—20(r;— 1)} — 2 exp{—a(r;—1,)}] (18)

is the Morse function in r;. Note that D = — V(r,) is the binding energy of an atom
pair in equilibrium according to this function. Bearing in mind the limit (175) we
also see that D is the binding energy per atom pair for the full potential (13). The
form of the function 4, was selected mainly for computational facility. The change
in cos ¢,; was taken rather than 8¢,; because cos ¢,; is simpler to calculate from the
scalar product r;- r;.

McMurry, Solbrig, Boyter & Noble (1967) have developed a harmonic valence-
force potential for diamond, matched to neutron-diffraction dispersion data. Their
function employs the valence coordinates &r; and r,8¢,;, and assumes six force
constants: F,, Fy, f,; (as used above), f,.., f44,fs4+- The last three couple adjacent bond
lengths, interbond angles sharing a common arm and apex, and interbond angles
sharing a common arm but no common apex. The constant f,4. brings in fifth-
neighbour interactions, while our potential includes only first and second neighbour
interactions. These three additional constants could readily be included in our
potential, but we have chosen to use only three for the following reasons: (i) the
force calculations are greatly simplified by restriction to second-neighbour range;
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(ii) exclusion of f,, avoids consideration of atom relaxation at a free surface (see
§4.1); (iii) no values for the six constants were available for silicon or germanium;
it was considered preferable to select three constants which could be uniquely
determined from the three elastic constants c¢,y, €19, C44.

Using the methods described in the appendix, the force constants were deter-
mined from the experimental elastic constants, and « from the sublimation energy,
for the three materials diamond, silicon and germanium. The results are given in
table 1. The sublimation energy rather than the surface energy was chosen for
determination of « because of greater accuracy in available data.

3.2. Relaxation procedure
The atomic displacements from perfect-lattice positions are calculated from the
continuum equations (4), (6) and (8) to provide a first approximation for the adjust-
able atom positions in region I and the fixed positions in region II. Figure 5 shows
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Ficure 5. Subdivision of diamond lattice into rectangular shells about (111) crack tip for the
purpose of labelling atoms in relaxation calculation. Two adjacent (0I1) planes are shown
(open and closed circles), separated by 4/2ry[y/3 in thex;-direction. The structure has period
2,/2r[+/3 in the xs-direction.

the scheme adopted for labelling individual atoms. The projection of the perfect
lattice on the (011) plane (the x, , plane) is divided into rectangular cells /(2) 7, x 47,,
each cell containing two atoms. The crack tip (origin of z,%,) is assumed to lie at
the junction of four cells, and region I is then taken as a chosen number of
rectangular shells.

The computational procedure adopted to relax region I to equilibrium was the
well-known method (Gibson, Goland, Milgram & Vineyard 1960; Gehlen, Rosenfield
& Hahn 1968) in which the classical equations of motion of the atoms are integrated,
evaluating at each step the total kinetic energy, K. Whenever K reaches a maximum,
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the motion is stopped and the integration proceeds from rest. In this way, the
potential energy is made to decrease monotonically towards the minimum. The
calculation was halted when each resultant force was smaller than a tolerance
selected to limit the residual error in nearest-neighbour bond strain to less than 10—
This condition was reached in typically 100 to 200 time steps.

3.3. Results

The core region was cautiously relaxed by progressively increasing the size of
region I to include 2, 4, 6 and finally 8 rectangular shells: that is, 512 independent
atoms were ultimately relaxed. The resulting atomic configurations are shown in
figure 6 for the three diamond-type crystals. Figure 6 shows the progressive stretching
of bonds across the crack plane up to and beyond the ‘rupture point’ as one proceeds
in the negative z, direction. The exact point of rupture is not simple to specify
because of non-central terms in the force function used. However, since the radial
force constant F, is the dominant coefficient in (13), we can, to fair approximation,
discuss bond rupture for (111) cleavage solely in terms of the radial (Morse law)
component of the force. The bond strain for rupture is then that at which this force
component is a maximum. From differentiation of (18) we obtain the critical

extension
r,— 7o = (1/a)In 2. (19)

Using r,, o values for silicon (which we discuss here as representative of all three
crystals) from table 1, we obtain a rupture strain (r,—7y)/r, = 0.20. From this we
assert that all [111] bonds to the left of QT in figure 65 have ruptured, while QT
and those to the right have not.

The results of more detailed calculations of bond force and strain are shown for
silicon in figure 7. One curve indicates the x,-component of the true bond tension
(i.e including bond-bending terms) across the crack plane. (The x;-components
are comparatively negligible.) The concentration of stress at the tip is clearly evident.
The length of crack interface across which cohesive forces might be considered
significant (Barenblatt’s ‘d’) is no more than three atomic spacings (about 1nm).
The other curve shows the bond strains. The abrupt transition from the ‘stretched’
to ‘ruptured’ state of the bonds permits the crack tip to be located to within one
atomic spacing. Since in the continuum approximation the crack tip was originally
taken to be at the origin in figure 6, we may say that the crack has closed up during
relaxation by one atomic spacing.

In order to clarify the changes during relaxation as the size of region I was in-
creased, we have plotted in figure 8 the lengths of the bonds PS, QT, RU (see
figure 6b) for silicon at each stage. While a trend is discernible to levelling out in
values, the ideal of independence of model size has clearly not been reached. One
reason for this is that region II is not behaving as a linear continuum, as the model
supposes. For from figure 7 it may be seen that even with eight shells in region I,
the bond strains at the boundary are approximately 0.02. This lies beyond the
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‘linear’ range for the potential used, the radial force constant, for instance, being
20 9, lower at this strain level than that in the unstrained state.

Comparison of figures 6a, b and ¢ reveals no obvious qualitative differences,
other than what could be predicted from the continuum theory: the relative
magnitude of the surface energy and the elastic constants give diamond a much
narrower equilibrium crack profile than the other two crystals. On the atomic level,
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Fieure 6. Computer-relaxed atomic configuration near equilibrium (111) crack tips in (a)
diamond, (b) silicon, and (¢) germanium. (0I1) projection plane (as in figure 5), but only
portion of core region is shown. Computed using datea in table 1. Axes graduated in units
of 0.1nm (14).
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this fact can be understood from the relatively large bond-bending constant, F,,
for diamond which produces a greater resistance to shear deformation around the
crack tip than is apparent in silicon or germanium.

1.5
0.5' PS
1‘
Z F1.0 4 1
| Q
= g
- = S
< s 504G
8 W
=t
3 (055 % ]
=] 0.
g 8 Qr
< | 0.3
RU
5 '0 T | 1 1 1
1 2 0 2 4 6 8
position on crack plane z;/nm no. shells relaxed
Ficure 7 FIGURE 8

F1cUuRE 7. Plots of strain and tension in the [111] bonds across the (111) crack plane in silicon.

F1cUrE 8. Dependence of Si—Si bond-lengths PS, QT, RU (refer to figure 6 b) on size of relaxed
region. As region I is increased from 2 to 4 rectangular shells, the bond QT contracts from
the ‘ ruptured’ to the ¢ stretched’ state, thus closing the crack by one atomic spacing.

4. DiSCcUSSION
4.1. Reliability of results

While the size of the relaxed core region influenced strongly the lengths of a few
bonds close to the tip, owing to the slight closing up of the crack during relaxation,
it had little effect on the surrounding atomic configuration. Let us now investigate
the dependence of results on other possible variations in the model.

First, we investigated the effect of modifying the potential for diamond to include
the force constant f,. as employed by McMurry et al. (1967). This was done by adding
the terms

iZj JrrAy(rs) A(ry) (20)

to (13) to give an energy dependence on the relative extensions of bonds having an
atom in common. This modification affects the relation of the parameters of the
potential to the elastic constants and to the sublimation and surface energies. In
particular, if the ¢th bond is a ‘ dangling’ bond at a free surface (7, — c0; 4,(r;) - 1/x),
the terms in (20) lead to a force on coupled bonds r; lying in the surface. Thus there
is now some surface relaxation. However, since this feature of the potential is not
based on any physical theory of redistribution of unpaired electrons, to which the
true surface structure is no doubt highly sensitive, any conclusions concerning

7 Vol. 329. A.
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modifications to the atomic arrangements would have to be viewed with due caution.
In fact, in our calculations the effects of this modification were minimal, both in
free surface structure and in the arrangement of atoms near the tip. This is not to
say, of course, that surface-bond redistribution effects play a minor role in de-
termining atomic structure near a crack tip. But our potential is matched chiefly
to bulk properties and is not entirely suitable as a basis for deciding such issues.

Ficurg 9. Crack-tip structure for germanium (compare figure 6¢) with modified
value of a = 8.33nm~1. (Corresponding k,, = 5.64 x 10° N m~3/2.)

The question of bond redistribution is also relevant in matching our parameter a
to the sublimation energy. Seeger & Swanson (1968), using a modified Morse
potential for defect calculations in silicon and germanium, follow a suggestion of
Lidiard (1965) in allowing for the electron promotion energy from s?p? to sp3
configuration when tetrahedral bonds are formed in a diamond-type crystal. The
effect of this consideration is to increase the bond-dissociation energy D (equation
(18)) found from a given sublimation energy. We have tested the effect on our
calculations of choosing « to agree with the value of D used by Seeger & Swanson
for germanium. The implied value of the surface energy is increased, so that the
equilibrium crack profile is somewhat wider (i.e. &;, from (11), (12) is larger). The
modified result, shown in figure 9, possesses the same qualitative features as found
before. The modification to « is probably exaggerated, since we have illogically
allowed for bond-redistribution energy on sublimation, but not on surface forma-
tion. Moreoever, our original deduced value of k,, agrees more closely with that
found experimentally by Jaccodine (1963).

A third point of interest concerns the role of bond-bending terms in the calcula-
tion. With only nearest-neighbour stretching terms, the crystal can have no rigidity
(De Launay 1956), so that the large angular force constants are certainly required
to prevent plasticity effects from occurring. With all our calculations no shear
instabilities in the structure were encountered during the relaxation procedure, thus
confirming that the diamond structure has sufficient rigidity to sustain a perfectly
brittle crack. Of the three crystals, diamond is the most rigid, suggesting that it is
least likely to undergo a brittle-to-ductile transition with increasing temperature.
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Finally, let us consider the effect of our neglect of the higher-order termsin (10) in
fixing the boundary conditions. These terms are possible contributors to the strain
field near the tip, and their magnitude would depend on the nature of the atomistic
tip zone. The complex matter of finding a self-consistent relaxed atomic configura-
tion and set of higher-order-term coefficients (the A;, in (10)) has been solved by
Sinclair (1971b) in a dislocation-core calculation. Sinclair found that the inclusion
of such higher terms gave superior ‘matching’ of the atomistic and continuum
regions, and eliminated the dependence of core structure on region I size. We initially
attempted in the present calculations to include the higher-order terms in the
minimization procedure, but the complexity of the calculations limited the size of
region I to five shells. Apparently this was too small for the general continuum
solution to apply throughout region II, for convergence in the A;, values could not
be obtained. This was probably due to the nonlinearity of elastic behaviour of the
lattice in the large strain field of the crack.

4.2. Comparison of continuum and atomistic theory

Except very near to the crack tip, the continuum and atomic-relaxation calcula-
tions show close agreement, despite the fact that the elastic non-linearity and the
atomicity render continuum theory strictly invalid throughout the core region.
This agreement is illustrated in figure 6b, in which the continuum solution for the
planes z, = + 4r, is superimposed on the atomic configuration. The difference
between the two profiles can be chiefly attributed to closure of the crack during
relaxation. Even this closure can be explained on a continuum basis, as follows.
The strains near the tip are extensional rather than compressive, so that from the
curvature of the principal (Morse) term in the force law, we can say that the elastic
constants will be effectively reduced in the tip vicinity. This leads us to expect a
locally ‘blunted’ crack profile, which could only be achieved by a shortening of
the crack. However, even if we interpret the narrowing of the profile during relaxa-
tion to the formation of a Barenblatt-type cusp, we have d ~ 3r,. Since d is not
sufficiently large compared with atomic dimensions we conclude, in agreement with
Cribb & Tomkins (1967), that the Barenblatt model isnot valid, at least for diamond-
structure crystals.

It is of interest to review briefly the possibility of carrying the above arguments
over to other classes of brittle material, in particular to the glassy solids of great
practical importance. A little consideration shows that comparisons with the above
results must be made with due caution. For instance, assuming that the bond-
stretching terms in glasses may again be represented by a Morse law for the covalent
Si—O bond, we may tentatively anticipate that the predictions of linear continuum
theory may once more hold to good approximation except within a few atomic
spacings from the crack tip. However, in a glass structure the Si—O bonds will be
oriented in somewhat random fashion across the ultimate crack plane so that, unlike
the situation depicted in figure 6 where bond rupture may be treated essentially in
terms of a stretching mode, other bond deformation modes (e.g. shearing, flexing,

7-2
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twisting) would require explicit consideration. Further, the possibility that a limited
amount of plastic low may occur at the crack tip cannot be overlooked (Marsh
1964). These factors may explain the linear elasticity prediction of § 2.2, that glasses
have a significantly rounder tip profile than the diamond-type crystals. Notwith-
standing these differences in behaviour between the two classes of solid, we are led
to conclude that the short range of the Si—O bond will be decisive in once more
rendering invalid the Barenblatt cusp model. On the other hand, for materials in
which the cohesive forces acting across the crack interface are relatively long range
in nature, e.g. mica, ionic crystals, etc., we might expect a sufficiently extensive
cusp-like region for Barenblatt’s theory to be applicable.

4.3. Implications of the atomistic calculations

In setting up a brittle-fracture model one often needs to specify conditions at the
tip of the crack. But this is the very region where continuum approximations prove
to be least representative. The present calculations indicate that for covalently
bonded solids the concept of a rounded tip has little physical meaning: rather, the
concept of a narrow slit held together at its end by a line of bonds close to the rupture
point presents a more accurate picture.

This distinction may, for example, be of importance when considering the
practical question of the effect of environmental conditions on brittle fracture. It
iswell known from studies on glass that cracks propagate more readily in the presence
of areactive gas or liquid, or at elevated temperatures, owing to reduced interatomic
cohesion at the crack tip. The mechanism of interaction between environment and
cohesive bond is, however, not well understood. Of the theoretical explanations
proposed most are sensitive to details in the crack-tip geometry, and most use as
their basis the continuum concept of the smoothly rounded tip. The present study
suggests that the important region of interaction may be confined to the line of
nearly ruptured bonds (e.g. QT, figure 6) across the crack front. Apart from in-
dicating the geometrical aspects of events at the crack tip, the atomistic model
also emphasizes that one needs to be careful when specifying the mode of diffusion
of a chemical species to the tip bonds. For instance, a molecule which is small
enough to diffuse in gaseous form (e.g. O, molecule, with O—O separation 0.12nm)
between the crack walls in silicon or germanium, may be forced to undergo surface
or even bulk diffusion in the narrower crack region in diamond.

A similar argument may be put forward in discussing the paths of a crack loaded
in other than pure tension. Such a problem again requires detailed knowledge of
crack-tip geometry (Lawn 1968). It should, in principle, be possible to investigate
the effect of a biaxial state of external loading on the crack equilibrium and path in
diamond-type solids, but we have not attempted this calculation.

Thus it seems highly probable that many important facets of fracture theory
require detailed descriptions of mechanisms on a microscopic scale. Atom-relaxation
methods may consequently serve to provide the necessary basis for such descriptions.
Consideration of a kinked crack-front structure (Gilman & Tong 1971; Kanninen
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& Gehlen 1971) would appear to be the next logical step in the development of
a realistic atomistic model.

We are grateful to Professor F.C.Frank, F.R.S., for commenting on the.
manuscript.

APPENDIX. RELATION OF PHYSICAL PROPERTIES TO THE POTENTIAL
(1) Sublimation energy

Consider the perfect crystal to become infinitely dilated. That is, assume all
bond-lengths r; - co while all interbond angles ¢,; remain constant with value ¢,.
Then substitution of the limits (17) into (13) yields the energy as 1F,/a? per bond,
or F,[a? per atom. Thus the sublimation energy per mole is

‘ES = .No.F;. 0L2, (A 1)

where N, is the Avogadro constant.

(ii) {111} Surface energy

Let two-half-spaces of perfect crystal separated by a (111) plane be rigidly
separated in the [111] direction. Then only the first term in (13) has a finite limit
as the separation tends to infinity, and yields an energy of 1F,/x? per broken bond,
or }F,/a2 per surface atom. The limits (17) ensure that all atoms are in equilibrium
with no relaxation from the perfect-lattice configuration. Geometrical analysis
of the diamond structure shows that there are ,/(3)/4r3 atoms per unit area on the
{111} surface, so that the surface energy per unit area for this surface is

~ 16 72a?

(iii) Elastic constants

The derivation of the elastic properties of the diamond lattice from the potential
function involves analysis too lengthy to be presented here. As an example of
the method, consider the perfect lattice in a state of homogeneous bulk strain so
that e, = €, = €5 = €; ¢, = €5 = €5 = 0. Then every bond has length (1 + ¢) while all
interbond angles remain constant at ¢,. Then, for small ¢, we have 4,.(r;) = 7€,
A4(¢;;) = 0 for all ¢, j, so that the strain energy from (13) is

U = F,(ry€)? per atom, (A 3)
and from continuum theory,
U = 3(cyy,+2¢,,) €% per unit volume. (A 4)
Comparing (A 3), (A 4) we obtain
et 20, = \/(f—zoﬁ;- (A 5)
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Two other independent relations may be derived by considering other strain
states. However, in the general state of uniform strain, the lattice is not homo-
geneously strained, for each unit cell suffers internal distortion different from that
of the lattice as a whole. This fact must be taken into account when deriving atomic
displacements from continuum-theory displacement fields.

We find the following three relations between the elastic constants and the atomic
force constants:

_ /8 )
Cn = E;,;(Eﬁ 12F),
3
Cip = \/— (If}— 6F;), (A 6)
3 P2
Cy = “/ (F +2F¢+4‘/2f’¢_@—)
where P = F,—4F;—2,2f,,,

Q=1F+ 817;5 - 8J2f,¢.
These may be solved to yield F,, Fj, f,; in terms of the c;;.
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